Иммунная система

Материал из WIKIATLETICS
Перейти к: навигация, поиск

Физиология иммуннои системы

Иммунная система и процесс воспаления участвуют в защите организма от проникающих в него микроорганизмов, отвечая на повреждение. Однако неадекватная активация этих систем приводит к широкому спектру воспалительных нарушений. Воспаление характеризуется следующими признаками:

  • расширением сосудов, ведущим к покраснению тканей;
  • увеличением сосудистой проницаемости, ведущим к отеку тканей;
  • болью;
  • миграцией в ткани лейкоцитов;
  • изменением функции органа или ткани.

Физиология воспалительного процесса обладает некоторыми сходными характеристиками с физиологией повреждения. Реакции, которые они опосредуют, имеют цель обеспечить ответ организма на вторжение микроорганизмов, стресс или увеличение местного кровотока в области повреждения, обеспечивая тем самым миграцию в эту область лейкоцитов и других форменных элементов крови. Реакции обеспечивают выполнение большого количества важных процессов: возникновение боли в попытке уменьшить степень повреждения, изменение местной среды для уменьшения концентрации повреждающих веществ и миграцию лейкоцитов для уничтожения микроорганизмов.

Кроме того, многие аутакоиды, выделяемые в ответ на повреждение или инфекцию, вызывают увеличение сосудистой проницаемости, приводящее к отеку, и обеспечивают процесс регенерации и защиты ткани, который в случае неадекватности может приводить к изменению функции ткани.

Ключевой дополнительной характеристикой иммунного ответа является способность лимфоцитов распознавать чужеродные белки (антигены), которые могут быть поверхностными белками на патогенах или, у некоторых людей, совершенно безвредными белками (такими как пыльца растений или чешуйки кожи животных), вызывающими аллергические реакции (см. далее). Лимфоциты образуются из стволовых клеток костного мозга, затем в тимусе развиваются Т-лимфоциты, а в костном мозге — В-лимфоциты (см. рис. 9.1).

Т-лимфоциты имеют на своей поверхности антигенные Т-клеточные рецепторы

Т-лимфоциты специфически распознают антигены, ассоциированные с главным комплексом гистосовместимости (HLA-антигены), на антигенпрезентирующих клетках — макрофагах и дендритных клетках. В случае активации Т-лимфоцитов посредством антигена через Т-клеточные рецепторы продуцируются растворимые белки, называемые цитокинами, которые передают сигнал Т-лимфоцитам, В-лимфоцитам, моноцитам/макрофагам и другим клеткам (рис. 9.2).

Т-лимфоциты классифицируют на два подвида:

  • CD4+, которые взаимодействуют с В-лимфоцитами и помогают им осуществлять пролиферацию, дифференцировку и продукцию антител, поэтому их называют хелперными Т-лимфоцитами (Th). Th подразделяют на Th1 и Th2 на основании спектра цитокинов, которые они выделяют (рис. 9.3);
  • CD8+, которые уничтожают клетки, инфицированные вирусом или другими внутриклеточными патогенами, т.е. обладают цитотоксичностью, поэтому эти Т-лимфоциты называют цитотоксическими (Тс).

В-лимфоциты используют поверхностные иммуноглобулины в качестве антигенных рецепторов

В-лимфоциты специфически распознают конкретный антиген, и в случае стимуляции путем взаимодействия между поверхностным иммуноглобулином и специфическим антигеном В-лимфоциты пролиферируют и дифференцируются в плазматические клетки, которые продуцируют большое количество рецепторного иммуноглобулина в растворимой форме, т.е. антитела. Они присутствуют в крови и тканевых жидкостях и могут связываться с антигеном, активировавшим В-лимфоциты. Наличие антител приводит к активации других частей иммунной системы, что способствуют элиминации патогена, несущего этот антиген. Th1-лимфоциты обычно вызывают В-лимфоцитами синтез антител IgG. Однако, если Тh2-лимфоциты выделяют IL-4, это является сигналом для В-лимфоцитов к продуцированию антител IgE — важной составляющей аллергических или атопических состояний. У людей с атопическими реакциями имеется наследственная предрасположенность к выработке антител IgE в ответ на вдыхаемые и/или поступающие с пищей вещества, которые не всегда являются аллергенами для людей, не склонных к атопическим реакциям.

Система гемостаза — специальная система, ограничивающая кровопотерю, но активация этой системы также ведет к образованию различных аутакоидов, способных влиять на процесс воспаления (см. главу 10).

Все описанные реакции требуют либо синтеза аутакоидов, либо выброса их из клеток, в которых они запасены. Местный контроль кровотока очень важен для всего процесса, и не удивительно, что весь набор аутакоидов и трансмиттеров, — гистамин, серотонин, оксид азота, тромбоксан А2, простагландины, брадикинин и эндотелии — направлен на локальную регуляцию кровотока. Боль, связанная с повреждением тканей, обусловлена не только прямой стимуляцией афферентных нервных окончаний через активацию рецепторов чувствительных нервов, но также связана с действием широкого круга местных эндогенных трансмиттеров, которые могут инициировать боль и изменять передачу болевого импульса, изменяя восприимчивость болевых волокон. Такое алгезическое действие, акцентуирующее и усиливающее боль, называют гипералгезией (см. главу 8).

Рис. 9.2 Функции В-лимфоцитов и Т-лимфоцитов. В-лимфоциты (В) продуцируют антитела, а хелперные Т-лимфоциты (Th) стимулируются антигенпрезентирующими клетками (АПК) и В-лимфоцитами для продукции цитокинов, которые контролируют иммунный ответ. Активация макрофагов приводит к уничтожению внутриклеточных микроорганизмов. Цитотоксические Т-лимфоциты (Тс) и большие гранулярные лимфоциты (БГЛ) распознают и уничтожают зараженные клетки организма.

Важной причиной воспаления, помимо физического повреждения ткани, является активация иммунных механизмов. Иммунная система защищает организм от инвазии чужеродных организмов. Термин «чужеродный организм» относится к широкому кругу веществ: от небиологических материалов в виде частиц до паразитов, бактерий, вирусов и даже чужеродных белков. Для того чтобы справляться с этими «вторжениями», организм должен уметь отличать свои белки от чужеродных, определять «чужака», успешно атаковать и удалять его. В случае аутоиммунных состояний иммунная система, к сожалению, теряет способность правильно различать «своих» и «чужих», и начинает атаковать собственные белки организма с катастрофическими для него последствиями.

Таким образом, у иммунной системы несколько функций: (1) запуск процессов распознавания чужеродного организма и правильное различие «своих» и «чужих»; (2) активация соответствующего ответа,предназначенного для инактивации и удаления внедрившегося чужеродного организма. Ответы должны включать адекватную информацию для рекрутмента, активации и создания всех необходимых компонентов иммунной системы.

Рис. 9.3 CD4+ Т-лимфоциты подразделяют на Th, и Th2 на основании профиля выделяемых цитокинов. Th, выделяют интерферон у (IFN-y), который может ингибировать способность В-лимфоцитов (В) производить антитела иммуноглобулина Е (IgE), занимающие центральное место в индукции аллергических реакций. В то же время Th2 выделяют как интерлейкин-4 (IL-4), который является необходимым кофактором для индукции синтеза IgE В-лимфоцитами, так и IL-5 — мощный хемоаттрактант для эозино-филов, которые характеризуют аллергическую реакцию.

Низкомолекулярные аутакоиды

Низкомолекулярные амины гистамин и серотонин являются аутакоидами, которые накапливаются в организме после синтеза из исходной аминокислоты путем ее декарбоксилирования. Оба амина накапливаются в специальных везикулах в нервных клетках, из которых высвобождаются для выполнения своей нейротрансмиттерной функции. Однако гистамин накапливается также в тучных клетках, энтерохромаффинных клетках и тромбоцитах.

5-НТ также обнаруживается в тромбоцитах и тучных клетках некоторых видов. Оба вещества имеют общие черты в их роли в физиологии и патологии, однако у них есть и определенные различия.

Гистамин

Гистамин образуется из исходной аминокислоты гистидина под воздействием гистидиндекарбоксилазы (рис. 9.4). Не существует клинически значимых препаратов, влияющих на синтез гистамина, однако определенные препараты, вызывают выделение гистамина из тучных клеток как побочный эффект. Результатами такого высвобождения гистамина являются его определенные фармакологические эффекты (см. далее). Не существует доступных в клинике препаратов, которые значительно влияют на метаболизм или экскрецию гистамина.

Гистамин обладает многими свойствами, помимо роли в качестве нейротрансмиттера в ЦНС; эти свойства проявляются после активации гистаминовых Н1-Н4-рецепторов.

Гистамин-высвобождающие препараты и препараты, напрямую вызывающие дегрануляцию тучных клеток

  • Базовые препараты, тубокурарин
  • Комплекс 48/80
  • Рентгеноконтрастные средства
  • Даунорубицин
  • Рубидазон
  • Пентамидин
  • Стильбадамин
  • Полимиксин
  • Дефероксамин
  • Тенипозид

Рис. 9.4 Пути метаболизма гистамина у человека.

Многие свойства гистамина обусловлены активацией Н1рецепторов

Гистамин действует как агонист гистаминовых H1-рецепторов, которые обнаружены в нервной системе, кровеносных сосудах и гладких мышцах. Местная инъекция гистамина вызывает у людей боль и зуд, а после его введения в системный кровоток наблюдается выраженный сосудорасширяющий эффект, который ответственен также за возникновение покраснения (эритемы) после внутридермальной инъекции, снижение артериального давления (коллапс) и покраснение кожи при системном введении препаратов, высвобождающих гистамин (см. ранее). Гистамин также влияет на целостность посткапиллярных венул, вызывает увеличение сосудистой проницаемости, оказывая влияние на H1-рецепторы на эндотелиальных клетках. Это приводит к локальному отеку тканей и системным проявлениям. Гистамин, высвобождаемый местно из тучных клеток, участвует в возникновении симптомов аллергических кожных заболеваний (экземы, крапивницы) и аллергических ринитов, а системное высвобождение гистамина связывают с развитием анафилаксии.

К эффектам, связанным с H1-рецепторами, относятся также сужение просвета дыхательных путей и сокращение гладких мышц желудочно-кишечного тракта. Таким образом, гистамин связан с возникновением аллергической астмы и пищевой аллергии. Все эти эффекты можно предотвратить с помощью антагонистов Н1рецепторов.

Основным эффектом агонистов Н2-рецепторов является секреция кислоты в желудке

Эффектов гистамина, обусловленных Н2-рецепторами, меньше, чем вызванных H1-рецепторами. Основное количество Н2-рецепторов расположено в желудке, где их активация является частью конечного эффекта, приводящего к секреции Н+. Антагонисты Н2-рецепторов могут полностью предотвращать секрецию кислоты в желудке. Такие препараты успешно используют с этой целью в клинической практике (см. главу 16). Н2-рецепторы есть также в сердце, где их активация путем повышения цАМФ может увеличивать сократимость миокарда, частоту сердечных сокращений и проводимость в атриовентрикулярном узле.

Влияние гистамина на другие Н-рецепторы требует дальнейшего исследования

Роль Н3- и Н4-рецепторов в настоящее время исследуют. Считается, что Н3-рецепторы, расположенные в ЦНС, вовлечены в нейрональные функции, связанные с регуляцией сна и бодрствования. Недавно было обнаружено участие Н4-рецепторов в регуляции воспалительной реакции.

Серотонин

Серотонин — 5-гидрокситриптамин, 5-НТ образуется из аминокислоты триптофана. Он был первоначально выделен из сыворотки, в которой его источником были тромбоциты. Фармакологически установлено, что 5-НТ обладает способностью вызывать сокращение гладких мышц, поэтому его назвали серотонином (фактором, выделенным из сыворотки и повышающим гладкомышечный тонус). 5-НТ может влиять на 7 типов 5-НТ-рецепторов (см. главу 8) и имеет огромное значение при воспалении. В клинической практике не применяют препараты, которые могут влиять на синтез или метаболизм 5-НТ, однако имеется большое количество препаратов, действующих как агонисты или антагонисты 5-НТ (см. главу 8), например суматриптан, наратриптан, алмотриптан, элетриптан и фроватриптан. Их используют для лечения мигрени, основываясь на способности агонистов 5-НТ-рецепторов вызывать расширение сосудов головного мозга вследствие стимуляции 5-НТ (см. главу 8).

ЭЙКОЗАНОИДЫ

Активация фосфолипазы А2 в клеточной мембране вызывает каскад реакций, приводящих к продукции большого количества длинноцепочечных (С20) липидных продуктов метаболизма арахидоновой кислоты (рис. 9.5). Эйкозаноиды (метаболиты арахидоновой кислоты) могут действовать как местные тканевые гормоны во многих ситуациях, включая потенцирование боли, контроль местного кровотока, бронхоконстрикцию, регуляцию функции тромбоцитов и поддержание целостности слизистой оболочки желудка.

К эйкозаноидам относятся семейства химически родственных соединений, получаемых из арахидоновой кислоты, наиболее важными из которых являются простагландины, лейкотриены (ЛТ) и тромбоксаны (см. рис. 9.5).

ПРОСТАГЛАНДИН И ТРОМБОКСАН. Арахидоновая кислота, высвобождающаяся под действием фосфолипазы А2, превращается в определенных клетках в простагландины под действием циклооксигеназных ферментов. Существуют две основные разновидности циклооксигеназы — ЦОГ-1 и ЦОГ-2, которые являются мишенями для клинически значимых противовоспалительных препаратов (см. далее). Основные перечислены в табл. 9.1

Лейкотриены

Арахидоновая кислота в некоторых клетках с помощью ферментов 5-липоксигеназы также может превращаться в цистеинил-лейкотриены (цис-ЛТ). Описаны и другие липоксигеназные ферменты, однако клинически значимых препаратов, действующих на эти ферменты, за исключением 5-липоксигеназы, не существует (см. далее). Цис-ЛТ (ЛТС4, ATD4 и ЛТЕ4) являются мощными спазмогенами в отношении дыхательных путей и гладких мышц желудочно-кишечного тракта, действующими через активацию цис-ЛТгрецепторов. Такие антагонисты лейкотриеновых рецепторов, как монтелукаст, используют в клинике для предотвращения эффектов лейкотриенов на дыхательные пути (см. далее).

Цитокины — большая группа молекул, которые передают сигнал между клетками в ходе иммунного ответа

Цитокины и факторы роста продуцируются клетками, участвующими в иммунном ответе (табл. 9.2), и играют жизненно важную роль в инициации и регуляции этих иммунных ответов. Все эти вещества представляют собой белки или пептиды, некоторые содержат сахара (гликопептиды). Цитокины:

  • оказывают разнообразные эффекты на различные типы клеток;
  • обладают сходными или синергическими эффектами;
  • по-видимому, участвуют в иммунном ответе как набор молекулярных сигналов, которые управляют взаимодействием отдельных компонентов клетки и контролируют их.

Интерлейкины — большая группа цитокинов (от IL-1 до IL-23), продуцируемых в основном Т-лимфоцитами, однако некоторые интерлейкины продуцируются также макрофагами и другими клетками. Цитокины, которые продуцируются лимфоцитами, иногда называют лимфокинами. Они обладают различными функциями, однако большинство участвует в стимуляции деления клеток или их дифференцировке. Каждый интерлейкин воздействует на определенную, ограниченную группу клеток, которые экспрессируют специфические рецепторы для конкретного интерлейкина.

Рис. 9.5 Глюкокортикостероиды снижают продукцию различных липидных медиаторов воспаления. НПВС оказывают противовоспалительное действие путем ингибирования циклооксигеназы, что приводит к снижению синтеза простагландинов и тромбоксана А2. Липоксигеназа катализирует образование провоспалительных медиаторов, лейкотриенов (ЛТС4 и ЛЮ4).

Например, IL-2 является ключевым цитокином, индуцирующим пролиферацию и активацию Т-лимфоцитов для инициации иммунных ответов. IL-4 стимулирует В-лимфоциты к продукции антител IgE, a IL-5 специфически активирует эозинофилы.

Интерфероны характеризуются ранней продукцией при вирусных инфекциях и играют особенно важную роль в ограничении их распространения. IFN-a и IFN-Р продуцируются макрофагами, зараженными вирусом; IFN-y продуцируется определенными активированными Т-лимфоцитами.

Они индуцируют антивирусное действие через активацию главного комплекса гистосовместимости класса I и класса II, активацию макрофагов, NK-клеток и активацию CD8+ и некоторых CD4+ Т-лимфоцитов (Th1-лимфоциты), вовлеченных в осуществление клеточно-опосредованного иммунитета.

Колониестимулирующие факторы (КСФ) участвуют в управлении делением и дифференцировкой стволовых клеток костного мозга и предшественников лейкоцитов крови. Некоторые КСФ могут активировать зрелые лейкоциты.

К цитокинам относятся также факторы некроза опухоли (ФНО-a и ФНО-β) и TGF-β, которые обладают широким набором функций и особенно важны для регуляции воспаления и цитотоксических реакций.

Таблица 9.2 Эффекты цитокинов в ходе иммунного ответа

Цитокины

Источники

Клетки-мишени и функции

IL-1

Макрофаги

Активация Т- и В-лимфоцитов

IL-2

Т-лимфоциты

Активация и пролиферация Т-лимфоцитов

IL-3

Т-лимфоциты

Пролиферация и дифференцировка стволовых клеток

IL-4

Т-лимфоциты

Дифференцировка В-лимфоцитов и переключение на IgЕ-класс

Дифференцировка Тh2-клеток

IL-5

Т-лимфоциты

Дифференцировка и активация эозинофилов

IL-6

Т-лимфоциты

Дифференцировка В-лимфоцитов

М-7

Стромальные

клетки

Пролиферация и дифференцировка В-лимфоцитов

IL-8

Макрофаги

Хемотаксис нейтрофилов

IL-10

Т-лимфоциты

Ингибирование Тh1-клеток

IL-12

Макрофаги

Дифференцировка Тh1-клеток

Гм-КСФ

Т-лимфоциты

Активация эозинофилов

IFN-y

Т-лимфоциты,

NK-клетки

Ингибирование Тh2-клеток, активация макрофагов Индукция ГКГ класса I и ГКГ класса II

IFN-a

Макрофаги

Активация NK-клеток, индукция ГКГ класса I

ФНО-a

Макрофаги

Активация макрофагов, гранулоцитов и Тс-клеток

IFN — интерферон; IgE — иммуноглобулин Е; IL — интерлейкин; NK-клетки — естественные киллерные клетки; Тс-клетки — цитотоксические Т-лимфоциты; Th-клетки — хелперные Т-лимфоциты; ГКГ — главный комплекс гистосовместимости; Гм-КСФ — гранулоцитарно-моноцитарный колониестимулирующий фактор; ФН0 — фактор некроза опухоли.

Нейтрализующие антитела к цитокинам и растворимые формы цитокиновых рецепторов блокируют связывание цитокинов с рецепторами и предотвращают вызываемые ими клеточные ответы. Антитела к ФНО-a и растворимый рецептор ФНО-a белок этанерцепт, используемые в клинической практике для терапии ревматоидного артрита путем ингибирования эффектов ФНО-а, достаточно эффективны для снижения воспаления в суставах (см. главу 15).